Difference between revisions of "Code:for patterns"
(Created page with "Here are some example codes that write essentially the same instruction over and over. Let's see how to abstract these patterns out using variables. Try and work the problems...") |
m (→Solutions) |
||
Line 61: | Line 61: | ||
out = fmt |
out = fmt |
||
n = 0 |
n = 0 |
||
− | for i in ["A1", " |
+ | for i in ["A1", "B1", "C1", "A2", "B2", "C2", "A3", "B3", "C3"]: |
out = out.replace(i, vals[n]) |
out = out.replace(i, vals[n]) |
||
n = n + 1 |
n = n + 1 |
||
Line 79: | Line 79: | ||
fed = fed[:] # copy fed |
fed = fed[:] # copy fed |
||
for i in range(n): |
for i in range(n): |
||
− | pos = (start + |
+ | pos = (start + i) % 12 # use mod to get an index in the circular |
# range 0, 1, 2, 3, ..., 10, 11, 0, 1, 2 |
# range 0, 1, 2, 3, ..., 10, 11, 0, 1, 2 |
||
− | if |
+ | if pos < 6: # positions 0, 1, ..., 5 are ABC |
− | ABC[ |
+ | ABC[pos] = ABC[pos] + 1 |
else: # positions 6, 7, ..., 11 map to fed 5, 4, ..., 0 |
else: # positions 6, 7, ..., 11 map to fed 5, 4, ..., 0 |
||
− | fed[5-( |
+ | fed[5-(pos-6)] = fed[5-(pos-6)] + 1 |
return ABC, fed, pos |
return ABC, fed, pos |
||
Line 98: | Line 98: | ||
x = [1] # start with a `seed' value |
x = [1] # start with a `seed' value |
||
for i in range(5): # generate 5 numbers |
for i in range(5): # generate 5 numbers |
||
− | x.append(x[i]* |
+ | x.append(x[i]*62 % 900) |
</source> |
</source> |
Latest revision as of 16:05, 25 January 2016
Here are some example codes that write essentially the same instruction over and over. Let's see how to abstract these patterns out using variables. Try and work the problems before flipping over to the solutions section.
Problems
<source lang="python">
- Replace text in a formula.
- A B C
vals = ["1", "", "2", # 1
"", "", "3", # 2 "", "", "" ] # 3
out = "A1 + C1 * C2" out = out.replace("A1", vals[0]) out = out.replace("A2", vals[3]) out = out.replace("A3", vals[6])
out = out.replace("B1", vals[1]) out = out.replace("B2", vals[4]) out = out.replace("B3", vals[7])
out = out.replace("C1", vals[2]) out = out.replace("C2", vals[5]) out = out.replace("C3", vals[8])
- Increment items in a list.
fed[5] = fed[5] + 1 fed[4] = fed[4] + 1 fed[3] = fed[3] + 1
- Append a line to a string.
if n >= 1:
out = out + "%f %f %f\n"%(a[0][0], a[0][1], a[0][2])
if n >= 2:
out = out + "%f %f %f\n"%(a[1][0], a[1][1], a[1][2])
if n >= 3:
out = out + "%f %f %f\n"%(a[2][0], a[2][1], a[2][2])
if n >= 4:
out = out + "%f %f %f\n"%(a[3][0], a[3][1], a[3][2])
- Iterate the linear congruential random number generator.
i = len(x)-1 x.append(x[i]*61 % 900) i = len(x)-1 x.append(x[i]*61 % 900) i = len(x)-1 x.append(x[i]*61 % 900) i = len(x)-1 x.append(x[i]*61 % 900) i = len(x)-1 x.append(x[i]*61 % 900) </source>
First, assume the loop control variable is "i", and try and write each one of these as a loop body that uses the variable "i" to make the pattern. Next, add the "for i in (...):" syntax on top by figuring out how many times / what values of "i" the loop should run.
Solutions
<source lang="python">
- Replace text in a formula.
- A B C
def substitute_str(fmt, vals): # substitute_str : str -> [str] -> str
out = fmt n = 0 for i in ["A1", "B1", "C1", "A2", "B2", "C2", "A3", "B3", "C3"]: out = out.replace(i, vals[n]) n = n + 1 return out
print substitute_str("A1 + C1*C2", vals)
- Increment items in a list.
def sow_list_6(fed, n): # sow_list : [int] -> int -> [int]
out = fed[:] # copy all elements of fed by slicing all of them for i in range(n): out[5-i] = out[5-i] + 1 return out
- Increment items in a list (advanced).
def sow_list(ABC, fed, start, n): # [int] -> [int] -> int -> int -> ([int], [int], int)
ABC = ABC[:] # copy ABC fed = fed[:] # copy fed for i in range(n): pos = (start + i) % 12 # use mod to get an index in the circular # range 0, 1, 2, 3, ..., 10, 11, 0, 1, 2 if pos < 6: # positions 0, 1, ..., 5 are ABC ABC[pos] = ABC[pos] + 1 else: # positions 6, 7, ..., 11 map to fed 5, 4, ..., 0 fed[5-(pos-6)] = fed[5-(pos-6)] + 1 return ABC, fed, pos
- Append a line to a string.
def print_atoms(a): # print_atoms : float -> str
out = "Atomic coordinates (in Angstrom)\n" for i in range(len(a)): # loop over all items in a if len(a) > i: # This test is no longer needed. Do you see why? out = out + "%f %f %f\n"%(a[i][0], a[i][1], a[i][2]) return out
- Iterate the linear congruential "random" number generator.
x = [1] # start with a `seed' value for i in range(5): # generate 5 numbers
x.append(x[i]*62 % 900)
</source>